Density Practice: Worksheet #1

Calculate density, and identify substances using a density chart.

Density is a measure of the amount of mass in a certain volume. This physical property is often used to identify and classify substances. It is usually expressed in grams per cubic centimeters, or g/cm³. The chart on the right lists the densities of some common materials.

Equation:	Density = $\underline{\text{mass}}$	or	$\mathbf{D} = \mathbf{\underline{m}}$
	Volume		\mathbf{V}

Substance	Density
	(g/cm^3)
Gold	19.3
Mercury	13.5
Lead	11.4
Iron	7.87
Aluminum	3.7
Bone	1.7-2.0
Gasoline	0.66-0.69
Air (dry)	0.00119

Problem Statement	Formula	Define Variables	Substitution	Answer
Sample: What is the density of a	$D = \underline{m}$	M = 250 g	D = 250 g	2.5 g/cm^3
billiard ball that has a volume of	V	$V = 100 \text{ cm}^3$	100 cm^3	
100 cm ³ and a mass of 250 g?				
1. A loaf of bread has a volume				
of 2270 cm ³ and a mass of 454 g.				
What is the density of the bread?				
2 A 11 - 1 - 6 11 1 1				
2. A block of wood has a density of 0.6 g/cm ³ and a volume of				
1.2 cm ³ . What is the mass of the				
block of wood?				
3. A 800g boulder has a density				
of 8 g/cm ³ . What is the volume				
of the boulder?				
of the boulder:				
4. What is the mass of the block				
of iron illustrated below?				
2 cm 5 cm				
10 cm				

Use the data below to calculate the density of each unknown substance. Then use the density chart above to determine the identity of each substance.

Mass (g)	Volume	$\mathbf{D} = \mathbf{m/v}$	Density	Substance
	(cm ³)	Variable Substitutions	(g/cm ³)	
4725	350	$D = \frac{4725}{350}$	D = 13.5	Mercury
171	15	330		
148	40			
475	250			
680	1000			